On nonexistence for stationary solutions to the Navier-Stokes equations with a linear strain
نویسندگان
چکیده
We consider stationary solutions to the three-dimensional Navier-Stokes equations for viscous incompressible flows in the presence of a linear strain. For certain class of strains we prove a Liouville type theorem under suitable decay conditions on vorticity fields.
منابع مشابه
Aixsymmetric Stagnation Point Flow of a Viscous Fluid on a Moving Cylinder with Time Dependent Axial Velocity
The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinite moving cylinder with time-dependent axial velocity is investigated. The impinging free stream is steady with a strain rate k. An exact solution of the Navier-Stokes equations is derived in this problem. A reduction of these equations is obtained by use of appropriate transformations. The general self-si...
متن کاملOn the nonexistence of time dependent global weak solutions to the compressible Navier-Stokes equations
In this paper we prove the nonexistence of global weak solutions to the compressible Navier-Stokes equations for the isentropic gas in R N , N ≥ 3, where the pressure law given by p(ρ) = aρ γ , a > 0, 1 < γ ≤
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملThe Navier-Stokes Equations with Particle Methods
The non-stationary nonlinear Navier-Stokes equations describe the motion of a viscous incompressible fluid flow for 0 < t 6 T in some bounded three-dimensional domain. Up to now it is not known wether these equations are well-posed or not. Therefore we use a particle method to develop a system of approximate equations. We show that this system can be solved uniquely and globally in time and tha...
متن کاملInstability theory of the Navier-Stokes-Poisson equations
The stability question of the Lane-Emden stationary gaseous star configurations is an interesting problem arising in astrophysics. We establish both linear and nonlinear dynamical instability results for the Lane-Emden solutions in the framework of the Navier-Stokes-Poisson system with adiabatic exponent 6/5 < γ < 4/3.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011